The constant demand for oil and gas has dramatically increased hydraulic fracturing (fracking) of shale reservoirs, decreasing reservoir porosity and permeability. As a result, the control and prevention of bioclogging is important in sustaining hydrocarbon production from fracked shale reservoirs. Using the first-ever constructed shale—GeoBioCell—as a microfluidic test bed, researchers are investigating the effects of sulfate-reducing bacteria and iron sulfide biominerals on porosity and hydraulic resistance in fracked shale reservoirs.
This image of a Devonian-age New Albany shale sample collected from deep within the Illinois Basin was created using Zeiss AxioObserver Z1 Widefield Fluorescence Microscope with Apotome. The light-green and periwinkle blue quartz grains are interspersed with dark-green pyrite, reminiscent of a sea of glass. The dark backdrop accentuates the natural beauty of shale and its formation in ancient sea beds from deep water marine environments.